Ср. Май 29th, 2024

Фрактальная геометрия

By admin Дек10,2014

Наука о Хаосе является большим, чем просто новая техника торговли. Это — наш новый подход к восприятию окружающего мира. Подобный взгляд на мир значительно старше нашей летописной истории. До середины 1970-х годов у нас не было достаточно мощных компьютеров или другого оборудования, необходимых для математического и функционального анализа нашего мировоззрения. Теория Хаоса — это первый подход, успешно моделирующий сложные формы (живые и неживые) и турбулентные потоки, в соответствии со строгими канонами математической методологии.
Фрактальная геометрия, один из инструментов теории хаоса, используется для изуче-ния феноменов, которые являются хаотическими только с точки зрения евклидовой гео-метрии и линейной математики.
Фрактальный анализ произвел революцию в характере исследований, ведущихся в несметном количестве различных областей науки: метеорологии, медицине, геологии, экономике, метафизике. Эта новая перспективная стратегия обладает потенциалом глубокого воздействия на всех из нас, сильно изменив нашу жизнь. Фрактальный анализ — новая мощная парадигма. Вместе с квантовой механикой и теорией относительности, это новый научный мир, некогда приоткрывшийся Галилею.
Хотя классическая физика может смоделировать процесс создания Вселенной от первой наносекунды «большого взрыва» до настоящего времени, она не в состоянии создать модель потока крови, протекающей по левому желудочку человеческого сердца за одну секунду. Классическая физика может моделировать структуру вещества от кварков в составе атомов до галактических скоплений. Но она не в состоянии создать модель формы облака, структуры растения, речного потока или махинаций рынка.
Наука представляется вполне удобной с ее способностью создания моделей, исполь-зующих линейную математику и евклидову геометрию. Но ее успехи не впечатляют, когда дело приходится иметь с нелинейными турбулентными и живыми системами. Очень просто определяемый, нелинейный эффект возникает, когда энергия следствия многократно сильнее энергии причины. В ньютоновом мире существует абсолютная связующая цепь между причиной и эффектом, а в евклидовой геометрии — все формы гладки и регулярны. Ни один из этих подходов не может объяснить поведение такой системы, как рынок.
Гладкие отполированные поверхности, пустое пространство, совершенные по форме сферы, конусы и правильные углы евклидовой геометрии эстетически привлекательны и даже элегантны. Однако, они совершенно не описывают тот грубый и ершистый мир, в котором мы живем и торгуем.
Отталкиваясь от этого евклидово/ньютонова мира, мы развивали нашу линейную математику, включая параметрическую статистику, наиболее часто символизируемую «нормальной», или колоколообразной кривой. Этот подход облегчает понимание, упрощая и вычленяя элементы абстракции, которые, как мы думаем, являются несущественными с нашей точки зрения для системы. Ключевое слово здесь — несущественный. В реальном мире эти отвергнутые «предметы не первой необходимости» вовсе не являются отклонениями, характеризующиеся как незначительные, от норм евклидова пространства; скорее, они представляют собой существенные характеристики реальных систем. Вычленяя эти несущественные отклонения (теперь известные как фракталы) из нормы, мы сможем увидеть реальную основную структуру энергии и поведения.
То, как определил фракталы Бенойт Мандельброт5, который первый сформулировал определение фрактала, довольно точно описывает его:
«Почему геометрию часто называют холодной и сухой? Одна из причин в ее неспособно-сти описать форму облака, горы, дерева или берега моря. Облака — это не сферы, горы — не конусы, берега — не окружности и кора дерева не является гладкой, и молния не движется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Набор масштабов измерения длин объектов неограниченно ве-лик и способен обеспечить бесконечное число потребностей. Существование этих объ-ектов бросает нам вызов, склоняя к изучению их форм. Этого избежал Евклид, оставив в стороне вопрос о том, как быть с бесформенным, как исследовать морфологию живого. Математики пренебрегали этим вызовом, более того — хотели убежать от природы, изобретая теории, не связанные ни с чем, что бы мы могли увидеть или почувствовать» (Цитата из Gleick, 1987, стр.98).
Мандельброт и другие ученые, такие как Пригожий, Файженбаум, Бэрнсли, Смэйл и Хенон, нашли открытие этого нового подхода к изучению поведения живого и неживого невероятным. Они обнаружили, что на границе между конфликтами противоположных сил стоит не рождение хаотических, беспорядочных структур, как считалось ранее, а происходит спонтанное возникновение самоорганизации порядка более высокого уровня. Более того, структура этой самоорганизации не структурирована согласно схемам Евклида/Ньютона, а является новым видом организации. Она не статична, а находится внутри движения и роста. Судя по всему, организация этого порядка применима ко всем: от застежек молнии до экономического рынка.
Эта новая внутренняя структура проявляется в определенных местах, ранее отмеченных исследователями как несущественные случайности и, следовательно, отвергнутых. Фазы, отмечающие зарождение турбулентности, определение их временных характеристик и интенсивность, теперь могут быть предсказаны с более высокой математической точностью.
Как следствие, появляются следующие темы, которые необходимо обсудить: сущест-вование порядка в хаосе и рождение порядка из хаоса. Для более точного понимания вышесказанного, давайте рассмотрим типичную проблему в случае применения линейного анализа. После этого мы сможем приступить к применению принципов этого нового подхода к торговле.

By admin

Related Post